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A gravitation theory is constructed taking the thermodynamic and potential energy into account and also the phenomenon of 
weightlessness, using the presence of a potential energy, which is additionally justified theoretically and experimentally. A theory 
of the motion of gravitating masses in the Special Theory of Relativity is proposed for absolute and relative motion using proper 
times for the individual masses. This theory touches directly on Newtonian theory, but differs from it and from the General Theory 
of Relativity (in particular, when the rotation of the masses and also weightlessness are taken into account). A gravitation theory 
that is eovariant in the Fermi variables and invariant under Lorentz transformations is constructed. © 1997 Elsevier Science Ltd. 
All rights reserved. 

The phenomenon of weightlessness, observed when material bodies move in space, is due to the presence 
of masses and thei:r mutual attractive forces, proportional to the masses, and the geometrical properties 
of spaces as carriers of the corresponding mechanical and physical events. 

Model laws are constructed in the gravitation theory for local and global interactions between moving 
masses, and, on the basis of these, mathematical methods are derived for describing the free motions 
of systems of material bodies and their components. Interaction occurs due to the action of the dynamic 
force of  gravity, described, on the basis of observations, in the form dP = d m  • g and due to attraction 
between all the freely moving elementary masses in the system of material bodies considered. 

The attractive forces are balanced by inertial forces, which are also proportional to the moving masses, 
and they can also be interpreted as reactive forces, generated by the kinetic properties of spaces. They 
are expressed as a function of  the corresponding accelerations a of the mass elements for the inertial 
force by formulae of the form d m . a  and by postulating the locally correct equation 

d P - d m . a = 0 ,  or g = a  (1) 

when the invariant vectors g and a may be non-zero. In particular, in classical models of gravitation 
theory, it is assumed that there are no other interaction forces, in particular, contact interactions. 

In Newtonian theory, the important inequality g ~ 0 is taken into account, while in the General Theory 
of Relativity, instead of the force of  gravity P, a curved four-dimensional pseudo-Riemannian space is 
introduced as a carrier of the moving masses, so as to refine and improve the modelling of the description 
of  the free motiorts of masses by comparing the examples of calculations with experimental data in 
celestial mechanicL 

The main effects are explained by the properties of the Gaussian curvature of pseudo-Riemannian 
four-dimensional spaces, the weightlessness of moving masses, and the requirements that the orbits of 
celestial objects should be geodesics, i.e. the accelerations g (and a) should vanish. 

Hence, in the General Theory of Relativity gravitation forces are replaced by the properties of four- 
dimensional space!~, when each individual mass is specified by constant values of the coordinates ~1, ~2, 
~3 and a coordinate proper  time x, which form a system of Lagrange coordinates, always introduced 
explicitly or implicitly when using mathematical methods of investigations in mechanics, related to 
construction of the, oretical models. 

Thus, in the General Theory of Relativity the masses m of individual bodies are constant and non- 
zero, move with velocities that are constant in value and direction, but in curved space with g = 
a = 0. However, in this case, along any orbit of individuals there is no acceleration, and hence the motion 
of all the masses'are inertial, and the corresponding trajectories are said to be geodesics. 

Hence,  in the General Theory of Relativity all the motions of the masses must occur along geodesic 
lines when there are no forces, in general, and problems of gravitation theory reduce to determining 
pseudo-Riemannian spaces filled with geodesic lines. 
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In this connection, the effects of gravitation forces in the General Theory of Relativity can only arise 
when models are introduced outside the limits of gravitation theory or one must alter the General Theory 
of Relativity not only by taking into account the curvature of space, but also introduce the trajectories 
of the masses with accelerations. 

We will assume that the acceleration vectors of the material points g and a in Eqs (1) are invariant 
in L under coordinate transformations, when they are determined from the ratio to inertial tetrads or 
for relative acceleration in comoving coordinates, which are determined by equating to zero the three- 
dimensional relative velocities Vre I = 0 for individuals at rest with respect to moving reference frames. 
In this case, for individual masses we can only change the coordinate of the proper time x, but never- 
theless the lines L for the corresponding proper time coordinates may have a curvature and, consequently, 
absolute or relative accelerations. 

We can consider the variable coordinate of the proper time of an astronaut, measured by his or her 
clock, and another clock attached to mass elements, by definition, as synchronized quantities in 
Newtonian mechanics. 

However, in pseudo-Riemannian spaces with a signature (- - - +) in general global and local time 
synchronization on different trajectories L for different mass elements is, generally speaking, impossible. 

In global comoving systems of coordinates each individual particle, as a consequence of the equality 
Vrel = 0 in the three-dimensional relative sense (the small cabin of a spacecraft with an astronaut fixed 
in it) can be regarded as being in a state of relative rest. 

The acceleration g of the gravitation force is generated by attractive forces, according to the law of 
gravitation, and it is determined by the interactions of masses, while the accelerations a are governed 
by the kinematic properties of the trajectories of the moving elements of the masses considered in four- 
dimensional spaces. 

The actual formulation of mathematical problems and the necessary consequences of the initial 
equations (1) in gravitation theory are best developed using Lagrange coordinates ~1, ~2, k3, as compon- 
ents of a vector which retains constant values on L, as which, we can take, in particular, the partial values 
of certain initial data. It is necessary to introduce such data when integrating the corresponding ordinary 
differential equations for each separate individual element in the continuous medium considered or 
for an isolated individual object, undergoing motion in certain fixed pseudo-Riemannian spaces, 
calculated with respect to local inertial tetrads, considered at points of the lines L. 

The phenomenon of weightlessness in a system of freely moving bodies always arises when all the 
interaction forces for each of the moving elements of the bodies are proportional to their mass. 

It is precisely this that is assumed in the gravitation theory, where freely moving systems of bodies 
and their elements with masses are considered only under the action of modelled overall attractive mass 
forces d P =  dm• g, and inertial forces dm • a in the small, according to Eqs (1). The accelerations 
are determined for each individual particle using comoving holonomically introduced Lagrange 
coordinates ~1, ~2, ~3, x and, in particular, in a system of non-holonomically introduced Fermi coordinates 
x 1, x 2, x 3. The constant values of the Cartesian-like geometrical coordinates x 1, x 2, x 3 correspond to 
constant initial data, which are distinguished in four-dimensional spaces together with additional 
initial-type conditions for the line L-- the trajectories of the moving individual point masses, while the 
time-like variables x is an indication of the physically defined clocks of the proper time x attached to 
them. 

As we know, generally speaking, for the Fermi variables x 1, x 2, x 3 introduced, that are non-holonomic 
by definition, along the lines L as trajectories of the individual elements at all points L, all the Christoffel 
symbols are zero. 

The property of accompaniment in Fermi coordinates for the coordinates of points and space denotes 
that the contravariant components of the comoving relative three-dimensional velocities Vrel = 0 are 
zero on the lines L. In other words, the following equations hold 

V~el = dxCt/dx = 0 and x a = const on L (tx = 1, 2, 3) 

However, the coordinate transformations ~a(x v) = ¢a(xV), generally speaking, are different for different 
L. The components get4 = ua (for metric Riemannian spaces with a metric of the form (3), see below), 
generally speaking, cannot be made to vanish by a coordinate transformation. In particular, the invariant 
vector 2to = rot u is non-zero, but is constant along L, and a finite body, which has mass, has a constant 
angular velocity and, correspondingly, a constant angular momentum (we have in mind a mass point 
with spin) in the grax/itation theory. 

In general, and particularly in arbitrary pseudo-Riemannian spaces, for the non-holonomically 
introduced co-moving Fermi variables, the trajectories L1 and L2 correspond to different constant values 
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of the coordinates.I; 1 , X 2, X 3 in different Minkowski spaces, respectively shifted translationally or rotated 
with respect to one another. 

Hence, for all spaces in different Fermi variables, representing a Minkowski space, we can put 

ga~dxadx~ = _(dxl)2 _ (dx2)2  _ (dx3)2  (2) 

and using additional Lorentz transformations and additional axioms on the invariance of mechanical 
phenomena for ind!ividual points with respect to Lorentz transformations at points L we can obtain a 
unique Minkowski space (only when (2) holds), as a carrier of events of mechanics in the gravitation 
theory. 

Non-Euclidean four-dimensional Riemannian spaces are used in the gravitation theory and a 
description of mechanical events, independent of the different reference frames employed, and, in 
particular, independent of the systems of global comoving Lagrange coordinates, is naturally implied. 
Here ~a are the coordinates of individual points, and an invariant time coordinate of proper time is 
introduced by means of x, which requires the introduction of the idea of velocity and acceleration using 
derivatives with respect to x. 

We will take the metric properties of spaces in the form 

ds 2 = gijdzidz j = c2d "~2 + 2ga4(~v,z)d~adz + ga~(~a,z)d~CLd~ ~, ~,l],]t = 1 , 2 , 3  (3) 

In co-moving non-holonomic Fermi systems of coordinates the coordinate lines x when ~a = const (L) 
correspond to proper time on L for individual masses. We emphasize that the introduction of the space 
metric in the form (3), where g44 = c 2 = const is immediately possible for all L, where on each line L 
we have ~1 = const (L), ~2 = const (L), ~3 = const (L), while ds = cdx and ds/dx = c = const, but the 
lines L may be different and curved. 

In the co-moving metric, for an absolute four-dimensional velocity and the corresponding accelera- 
tion along the coordinate line L for proper time x we can write, by definition 

u = ds/dz, a = du/dx, u4 = c 

where on L 

u -- c ~  4 = c e  4 + c g l a e  I + cg24e 2 + cg34 e3 = uke k (4) 

where 24 is the unit variable vector, directed along the tangent to L, and the bases e k form tetrad 
contravariant constant inertial bases of local reference frames. 

After differentiating (4) with respect to x we obtain formulae for the components of the absolute 
accelerations of points with covariant components of the four-dimensional accelerations on L 

act = cdgct4/d~, a 4 = 0 ( 5 )  

Equations (5) of the fundamental and co-moving coordinates also hold on each line L in different 
non-holonomically Jintroduced Fermi variables locally everywhere along all individual trajectories L in 
translational and re][ative motion [1] irrespective of their possible required values for four-dimensional 
pseudo-Riemannian spaces. 

In particular, if a certain scalar d'U, with the dimension of specific energy, referred to unit mass in 
a volume I"4, is a certain infinitely small quantity, which depends, in gravitation theory, only on the 
coordinates ~1, ~2, ~3 or the Fermi coordinates x 1, ~ ,  x 3, then obviously d'U = 0 on the line L, on which 

1 1 2 3 only x varies, since on L in the co-moving coordinatesx ,x2,x 3 the quantities ~ ,  ~ ,  ~ are also constant, 
4 while a = 0 and Vr~l = 0. (For models outside the framework of the gravitation theory, the specific 

energy d'U can be variable along L and, consequently, dependent on x.) 
However, the quantity U(x ~) = const (L) may be non-zero along each line L, taking different constant 

values along different L, and hence, in the co-moving coordinates using (4) we can always write 

aadx a = c dga4 dx ~ = - d ' U  (6) 
dz 

If we assume thai: U is a unique function of only the ~ or x coordinates, we can conclude from (5) 
and (6) that in co-moving coordinates the following conclusion holds 
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x dU(x Y) = c 2 cga4 =ua = - -  +ga4(xY), ~t,y=l,2,3; g44 (7) 
c dx a 

Correspondingly, for co-moving metrics in certain problems of the Theory of Relativity and, in 
particular, the gravitation theory for individual points we can use the following formula for the metric 

ds 2 = c2 d'c 2 - 2 x_ d U d z  + ficL (~'1) d~  a d z  _ dl 2 
c c 

(8) 

where dl 2 = -g'a~(x ~, "c)dxadx ~ or dl  2 = ---g'et~ (~I, ,~)d~Ctd~fl ' where, in Fermi variables dU(~ a) = dU(x a) 
and x a = ea(~v), but the functions are, generally speaking, different for different L. 

It is useful to note the following important fact. Metrics (8) in co-moving coordinates ~a, x and Fermi 
coordinates x, x can be rewritten in the following form 

7dU) + + ds 2 = ( c ~  - 1 2 (9) 

but dU(~) = dU(x) ~ 0 (only for shifts with a transfer from one co-moving line L to the neighbouring 
one do similar increments of the potential energy dU occur and correspondingly equal accelerations 
in the co-moving systems (8) and (9), which can be regarded as identical four-dimensional and three- 
dimensional accelerations in orbits L and which, in general, may be non-zero or in both cases equal to 
zero). 

If we put ua = 0 and correspondingly t~ = 1/2 rot u = 0, then for different L and correspondingly 
different values of the global time x, defined invariantly, we can write metric (8) in the form 

ds 2 = c2d'~ 2 - d l  2 (10) 

and, in particular, in the Special Theory of Relativity in the form 

ds2 = c2d.f2 _[(dx I)2 +(dr2)2 +(dx3)2] (11) 

It is obvious that if we specify the accelerations by (5) along all coordinate lines L with proper time 
x in non-holonomically introduced Fermi variables on each L, then the coordinates lines L are defined 
by the Ser6-Frenet formula where, irrespective of the space considered, both for absolute and for relative 
acceleration vectors a ~ 0 or a = 0. 

As we know from the history of the development of relativity theory, the following fundamental 
invariant equation of field theory in the General Theory of Relativity has been proposed 

l 6j R = kTj (12) RI-  
The left-hand side of this equation is the result of a variation of the expression R(2k)-ldV4 with the 

dimension of energy, where R is the Gaussian curvature, dg4 is the invariant element of a four-dimen- 
sional spatial volume of Riemann space, orthogonal to the line x, the constant k with dimension s2/(cm 
g) is an extremely small gravitational constant of the General Theory of Relativity, while T~ are the 
components of the energy-momentum tensor, specified for internal points in the specific models 
investigated. 

Equations (12) and relations (13) connected with them have the following common properties. 
1. It is possible to obtain detailed solutions in arbitrary pseudo-Riemannian spaces. A sufficient 

condition for obtaining any solutions in Riemannian spaces is for the Bianchi tensor to vanish, i.e. 

V./(R j - 1 8 ~ R )  =0  (13) 

2. The physical properties of mass interaction, governed by the law of gravitation, are ensured in co- 
moving Fermi variables x 1, x 2, x 3 with the explicit addition to Eqs (12) of Poisson's equation for the 

1 potential energy U(x , x 2, x 3 ) 

AU = -4~pG (14) 
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It follows from (14) that if this is taken into account, the law of gravitation in co-moving coordinates 
leads, as a result, to the following important conclusion 

p(x 1, x 2, x 3) = d m / d V  3 (for d m  = const, d V  3 = const along the lines) 

3. The tensor Ti in (1.2) can have any value, but only in physically justified problems is it best to use 
the expressions when T~ occurs, for the model problem considered, in the equations 

vj J =o (15) 

The fundamental problems in const.ructing physical-mechanical models consist of an appropriate 
determination of the components of T~ as a function of the corresponding governing parameters. 

4. On the other hand, models are possible in which a separate treatment of relations (13) and (15) 
in constructions of the modelling is impossible, when the global four-dimensional space is not Rieman- 
nian. Hence, to obtain physical results, important additions of a different kind will be required. 

It should be noted that, when modelling different phenomena, generally speaking, it is not always 
essential to use the global ideas of space and time defined in the problem considered. 

The representation of proper time, introduced non-holonomically in Fermi variables, is now well 
understood. We will merely add that the Newtonian theory is based on non-holonomic representations 
of the description of continua in gravitation theories as for different individual masses in separate 
different spaces. The trajectories of several moving points can be considered in different four- 
dimensional spaces, and some of their characteristics (for example, the proper times) may agree exactly 
irrespective of the properties of the different spaces. Hence, the dynamic model equations in gravitation 
theory can be written in the following forms. 

Holonomically i~L ~ ,  x variables 

v j ~  = o 

and, as a result of local transformations, non-holonomically in the Fermi variables x ~, x 

d ,/dxj -- o 

If we take into acr.ount the fact that the dynamic equations (14)are true in general, it follows from 
(10)--(14) that Eqs (12) are not closed, since we obtain from (14) that in non-holonomic form the theory 
holds for any families of lines L. 

Note that the derivation of Eqs (12) using "integrable principles" [2] is essentially based on taking 
the law of energy conservation into account, which is demonstrated in many textbooks in final form in 
the General Theory of Relativity. 

We can further write the equation 

R 
- - -  d V  4 = EdV3dx (16) 

2 k  

where the quantity E has the meaning of the local specific energy, while the coefficient k has the meaning 
of the gravitational constant, which is related to the Newtonian gravitational constant G and, in the 
General Theory of ]Relativity, is assumed to be equal to 

k =  8rtci/c I = 2.07 x 10 -48 c2/(cm g) (17) 

and is included in al lists of physical constants in physics publications. An independent determination 
of k by direct experiment is obviously impossible. 

It follows from (15) and (17) that the specific curvature of the corresponding Riemannian space is 
given by the formula 

R = 4 x 14 x 10-48E=0 (18) 

and when constructing models of the gravitation theory can be equated to zero in many applications. 
However, it is obvious that refinement of the modelling by refining the law of gravitation may turn out 
to be much more important in descriptions of many natural phenomena. 
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Basing ourselves on the general principles of the use of modelling and the physical possibilities of 
macroscopic methods of taking the specific energy E into account, it is natural to assume that in models 
of the gravitation theory R = 0 in ~a, x variables. Hence, we obtain, as a consequence, that Eq. (12) 
cannot be used to construct macroscopic mechanical models if we wish the modelling of the law of 
universal mass attraction to be  close to reality. In addition it follows from the above that a sensible 
final value of the potential energy U(x 1, x 2, x3), which must necessarily be taken into account, cannot 
be regarded as a replacement of the Gaussian curvature in special Riemannian spaces in gravitation 
theory. 

Note also that in a detailed consideration of the gravitation theory in the General Theory of Relativity 
it is fonnd that gravity forces due to the geodesic nature of the orbits in the General Theory of Relativity 
generally do not exist; there is only a curvature of four-dimensional pseudo-Riemannian space due to 
the fact that R ~ 0, since, according to Eq. (12) all the orbits of all individual mass particles in the General 
Theory of Relativity must be geodesics, as stated in many prestigious textbooks. 

However, in nature, the gravity forces described in gravitation theories must occur not only in 
Newtonian theory in celestial mechanics, but must also cause appropriate accelerations of masses, in 
particular, resulting from the potential energy, i.e. the presence of the function U(~ a) or U(xa), which 
is shown to be possible in the Special Theory of Relativity and in Riemannian spaces [3]. 

In a large number of mechanical problems and events gravity forces manifest themselves in a significant 
way and can be measured in any motions by special instruments. We mention the possibility of measuring 
gravity forces (in rocket flights) using instruments attached to moving masses; the gravity force is balanced 
in the instruments by inertial forces and other internal forces in free flight. 

It is obvious that, generally speaking, the replacement of gravity forces by the geometrical properties 
of spaces in quite unnatural and inappropriate. 

Hence, Eqs (1), which are the basis of the equations of weightlessness, enable the above models of 
gravitation theory to be constructed taking the direct formulation of the law of gravitation into account 
and possible extensions of the function U, introduced either as a function of the coordinates only in 
gravitation theory, or as a complete function due to the presence of transforming forms of energy in 
the mechanical models and problems considered. 

However, experiments show that in practice the law of gravitation cannot be disproved! The often- 
stated assertions that the presence of Gaussian curvature of spaces in gravitation phenomena can 
automatically replace the action of the attractive forces between masses in a better form is unjustified. 

Indeed, as a rule, in the local relationships of many foundations of physical events, which lead to the 
establishment of differential equations in different mechanical problems, existing gravity forces are not 
always completely or partially balanced by inertial forces, which are modelled as the soorce of the 
properties or geometry of space. Hence, it cannot be asserted that the origin of gravity forces can always 
be reduced to the geometry of pseudo-Riemannian space. We can list many examples of problems when 
gravity forces are completely balanced by elastic forces, gas pressure, friction forces, and so on. 

Important properties or events in the motions of mechanical systems can in many cases be 
characterized in an invariant way, by different concepts--not only scalar by also many other invariant 
concepts, represented, for examples, by vectors and tensors. 

Whereas distributed masses in space are represented by non-zero functions only at singular points 
and lines in empty spaces, the function U(x 1, ~, x 3) is harmonic and can be represented in terms of 
specified singularities, where U is a scalar quantity and invariant function, which can be introduced 
invariantly and always in special local Fermi Cartesian coordinates. 

If the scalars mU in co-moving coordinates are constant in coordinates for proper time x, then, along 
trajectories L of"point masses at rest" with proper time, the values of the potential energy are constant, 
but have different values for different point masses. 

The co-moving coordinates are coordinates connected with the spacecraft of astronauts or rockets 
flying freely in space. They can be formed on isolated point masses or for continua in non-holonomically 
employed Fermi coordinates. 

The readings of different instruments, attached to the spacecraft of astronauts "fixed" with respect 
to the spacecraft and the astronauts, can be reduced to their values for specified observers, including 
the characteristics and laws of motion of the spacecraft themselves with respect to any specified observers. 

The determination of the corresponding laws of motion for the observers is a problem in the theory 
of inertial navigation [4]. 

In many publications in gravitation theory only the motions of separate discrete individual interacting 
masses are considered. In co-moving coordinates the orbits in different Riemannian spaces or the proper 
time are obtained similarly, but the transformations for transfers between neighbouring orbits in fixed 
spaces are non-holonomic. 
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We have eonsid~red above motions in the gravitation theory of continuous media, formed by moving 
masses,, on which the conditions of continuity in Riemannian spaces instead of the Newtonian Saint 
Venant conditions are reduced to constancy of the values of the potential energy in different orbits or 
the proper time [51 and to the Bianchi identity Vj( R i -  1/2,5iR ) = 0 
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